

Welcome

aubio is a collection of algorithms and tools to label and transform music and
sounds. It scans or listens to audio signals and attempts to detect musical
events. For instance, when a drum is hit, at which frequency is a note, or at
what tempo is a rhythmic melody.

aubio features include segmenting a sound file before each of its attacks,
performing pitch detection, tapping the beat and producing midi streams from
live audio.

Quick links

	Python documentation

	Command line tools

	Developing with aubio

	Building aubio

Project pages

	Project homepage [https://aubio.org]: https://aubio.org

	aubio on github [https://github.com/aubio/aubio]: https://github.com/aubio/aubio

	aubio on pypi [https://pypi.python.org/pypi/aubio]: https://pypi.python.org/pypi/aubio

	Doxygen documentation [https://aubio.org/doc/latest/]: https://aubio.org/doc/latest/

	Mailing lists [https://lists.aubio.org/]: https://lists.aubio.org

	Travis Continuous integration page [https://travis-ci.org/aubio/aubio]

	Appveyor Continuous integration page [https://ci.appveyor.com/project/piem/aubio]

	Landscape python code validation [https://landscape.io/github/aubio/aubio/master]

	ReadTheDocs documentation [https://aubio.readthedocs.io/en/latest/]

Features

aubio provides several algorithms and routines, including:

	several onset detection methods

	different pitch detection methods

	tempo tracking and beat detection

	MFCC (mel-frequency cepstrum coefficients)

	FFT and phase vocoder

	up/down-sampling

	digital filters (low pass, high pass, and more)

	spectral filtering

	transient/steady-state separation

	sound file read and write access

	various mathematics utilities for music applications

The name aubio comes from audio with a typo: some errors are likely to be
found in the results.

Content

	Installing aubio
	Cheat sheet

	Downloading aubio
	Pre-compiled binaries

	Debian/Ubuntu packages

	Building aubio
	Latest release

	Git repository

	Compiling

	Running as a user

	Cleaning

	Frameworks for Xcode

	Using aubio from swift

	Android build

	Build options
	External libraries

	Media libraries

	Optimisation libraries

	Platform notes

	Other options

	Building the docs

	Installing aubio for Python
	Installing aubio with pip

	Installing aubio with conda

	Double precision

	Checking your installation

	Python tests

	Python documentation
	Contents

	Introduction

	Command line tools
	aubio

	aubiocut

	aubioonset

	aubiopitch

	aubiomfcc

	aubiotrack

	aubionotes

	aubioquiet

	Command line features

	Developing with aubio
	Design Basics

	Basic Types

	Reading a sound file

	Computing a spectrum

	Doxygen documentation

	Contribute

	About
	Credits

	Publications

	Citation

	Copyright

	License

Installing aubio

aubio runs on Linux, Windows, macOS, iOS, Android, and probably a few others
operating systems.

Aubio is available as a C library and as a python module.

Cheat sheet

	get aubio latest source code:

official repo
git clone https://git.aubio.org/aubio/aubio
mirror
git clone https://github.com/aubio/aubio
latest release
wget https://aubio.org/pub/aubio-<version>.tar.gz

	build aubio from source:

1. simple
cd aubio
make

2. step by step
./scripts/get_waf.sh
./waf configure
./waf build
sudo ./waf install

	install python-aubio from source:

from git
pip install git+https://git.aubio.org/aubio/aubio/
mirror
pip install git+https://github.com/aubio/aubio/
from latest release
pip install https://aubio.org/pub/aubio-latest.tar.bz2
from pypi
pip install aubio
from source directory
cd aubio
pip install -v .

	install python-aubio from a pre-compiled binary:

conda [osx, linux, win]
conda install -c conda-forge aubio
.deb (debian, ubuntu) [linux]
sudo apt-get install python3-aubio python-aubio aubio-tools
brew [osx]
brew install aubio --with-python

	get a pre-compiled version of libaubio:

.deb (linux) WARNING: old version
sudo apt-get install aubio-tools

python module
./setup.py install
using pip
pip install .

	check the list of optional dependencies:

debian / ubuntu
dpkg -l libavcodec-dev libavutil-dev libavformat-dev \
 libswresample-dev libavresample-dev \
 libsamplerate-dev libsndfile-dev \
 txt2man doxygen

Downloading aubio

A number of distributions already include aubio. Check your favorite package
management system, or have a look at the aubio download page [https://aubio.org/download] for more options.

To use aubio in an android project, see Android build.

To compile aubio from source, read Building aubio.

Pre-compiled binaries

Pre-compiled binaries [https://aubio.org/download]
are available for
macOS [https://aubio.org/download#osx],
iOS [https://aubio.org/download#ios],
and
windows [https://aubio.org/download#win]

To use aubio in a macOS or iOS application, see Frameworks for Xcode.

Debian/Ubuntu packages

For the latest Debian packages, see https://packages.debian.org/src:aubio.

For the latest Ubuntu packages, see http://packages.ubuntu.com/src:aubio.

For the latest version of the packages, see
https://anonscm.debian.org/cgit/collab-maint/aubio.git/. Use
git-buildpackage to build from the git repository. For instance:

$ git clone git://anonscm.debian.org/collab-maint/aubio.git
$ cd aubio
$ git buildpackage

Building aubio

Note

To download a prebuilt version of aubio, see Downloading aubio.

aubio uses waf [https://waf.io/] to configure, compile, and test the source.
A copy of waf is included in aubio tarball, so all you need is a terminal,
a compiler, and a recent version of python installed.

Note

Make sure you have all the Build options you want before building.

Latest release

The latest stable release can be downloaded from https://aubio.org/download:

$ curl -O http://aubio.org/pub/aubio-<version>.tar.bz2
$ tar xf aubio-<version>.tar.bz2
$ cd aubio-<version>/

Git repository

The latest git branch can be obtained with:

$ git clone git://git.aubio.org/git/aubio
$ cd aubio/

The following command will fetch the correct waf [https://waf.io/] version (not included in
aubio’s git):

$./scripts/get_waf.sh

Note

Windows users without Git Bash [https://git-for-windows.github.io/] installed will want to use the following
commands instead:

$ curl -fsS -o waf https://waf.io/waf-1.8.22
$ curl -fsS -o waf.bat https://raw.githubusercontent.com/waf-project/waf/master/utils/waf.bat

Compiling

To compile the C library, examples programs, and tests, run:

$./waf configure

Check out the available options using ./waf configure --help. Once
you are done with configuration, you can start building:

$./waf build

To install the freshly built C library and tools, simply run the following
command:

$ sudo ./waf install

Note

Windows users should simply run waf, without the leading ./. For
instance:

$ waf configure build

Running as a user

To use aubio without actually installing, for instance if you don’t have root
access to install libaubio on your system,

On Linux or macOS, sourcing the script scripts/setenv_local.sh should help:

$ source ./scripts/setenv_local.sh

This script sets LD_LIBRARY_PATH, for libaubio, and PYTHONPATH for the
python module.

On Linux, you should be able to set LD_LIBRARY_PATH with:

$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$PWD/build/src

On Mac OS X, a copy or a symlink can be made in ~/lib:

$ mkdir -p ~/lib
$ ln -sf $PWD/build/src/libaubio*.dylib ~/lib/

Note on Mac OS X systems older than El Capitan (10.11), the DYLD_LIBRARY_PATH
variable can be set as follows:

$ export DYLD_LIBRARY_PATH=$DYLD_LIBRARY_PATH:$PWD/build/src

Cleaning

If you wish to uninstall the files installed by the install command, use
uninstall:

$ sudo ./waf uninstall

To clean the source directory, use the clean command:

$./waf clean

To also forget the options previously passed to the last ./waf configure
invocation, use the distclean command:

$./waf distclean

Frameworks for Xcode

Binary frameworks [https://aubio.org/download] are available and ready to use in your XCode project, for
iOS [https://aubio.org/download#ios] and macOS [https://aubio.org/download#osx].

	Download and extract the corresponding framework.zip file from the Download page

	Select Build Phases in your project setting and unfold Link Binary with Libraries

	Add AudioToolbox and Accelerate system frameworks (or make sure they are listed)

	Add aubio.framework from the unzipped framework.zip

	Include the aubio header in your code:

	in C/C++:

#include <aubio/aubio.h>

	in Obj-C:

#import <aubio/aubio.h>

	in Swift:

import aubio

Using aubio from swift

Once you have downloaded and installed aubio.framework, you sould be able to use aubio from C, Obj-C, and
Swift source files.

Here is a short example showing how to read a sound file in swift:

import aubio

let path = Bundle.main.path(forResource: "example", ofType: "mp4")
if (path != nil) {
 let hop_size : uint_t = 512
 let a = new_fvec(hop_size)
 let b = new_aubio_source(path, 0, hop_size)
 var read: uint_t = 0
 var total_frames : uint_t = 0
 while (true) {
 aubio_source_do(b, a, &read)
 total_frames += read
 if (read < hop_size) { break }
 }
 print("read", total_frames, "frames at", aubio_source_get_samplerate(b), "Hz")
 del_aubio_source(b)
 del_fvec(a)
} else {
 print("could not find file")
}

Android build

To compile aubio for android, you will need to get the Android Native
Development Toolkit (NDK) [https://developer.android.com/ndk/], prepare a
standalone toolchain, and tell waf to use the NDK toolchain. An example script
to complete these tasks is available in scripts/build_android.

Build options

If built without any external dependencies aubio can be somewhat useful, for
instance to read, process, and write simple wav files.

To support more media input formats and add more features to aubio, you can use
one or all of the following external libraries.

You may also want to know more about the other options and the platform
notes

The configure script will automatically for these extra libraries. To make sure
the library or feature is used, pass the –enable-flag to waf. To disable
this feature, use –disable-feature.

To find out more about the build commands, use the –verbose option.

External libraries

External libraries are checked for using pkg-config. Set the
PKG_CONFIG_PATH environment variable if you have them installed in an
unusual location.

Note

If pkg-config is not found in PATH, the configure step will
succeed, but none of the external libraries will be used.

Media libraries

libav

libav.org [https://libav.org/], open source audio and video processing
tools.

If all of the following libraries are found, they will be used to compile
aubio_source_avcodec. so that aubio_source will be able to decode audio
from all formats supported by libav [https://libav.org/documentation/general.html#Audio-Codecs].

	libavcodec

	libavformat

	libavutil

	libavresample

To enable this option, configure with --enable-avcodec. The build will then
failed if the required libraries are not found. To disable this option,
configure with --disable-avcodec

libsndfile

libsndfile [http://www.mega-nerd.com/libsndfile/], a C library for reading
and writing sampled sound files.

With libsndfile built in, aubio_source_sndfile will be built in and used by
aubio_source.

To enable this option, configure with --enable-sndfile. The build will then
fail if the required library is not found. To disable this option, configure
with --disable-sndfile

libsamplerate

libsamplerate [http://www.mega-nerd.com/SRC/], a sample rate converter for
audio.

With libsamplerate built in, aubio_source_sndfile will support resampling,
and aubio_resample will be fully functional.

To enable this option, configure with --enable-samplerate. The build will
then fail if the required library is not found. To disable this option,
configure with --disable-samplerate

Optimisation libraries

libfftw3

FFTW [http://fftw.org/], a C subroutine for computing the discrete Fourier
transform

With libfftw3 built in, aubio_fft will use FFTW [http://fftw.org/] to
compute Fast Fourier Transform (FFT), allowing aubio to compute FFT on length
that are not a power of 2.

To enable this option, configure with --enable-fftw3. The build will
then fail if the required library is not found. To disable this option,
configure with --disable-fftw3

blas

On macOs/iOS, blas [https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms] are made
available through the Accelerate framework.

On Linux, they can be enabled with --enable-blas. On Debian (etch),
atlas, openblas, and libblas have been successfully tested.

When enabled, waf will check for the current blas configuration by running
pkg-config --libs blas. Depending of the library path returned by
pkg-config, different headers will be searched for.

Note

On Debian systems, multiple versions of BLAS and LAPACK [https://wiki.debian.org/DebianScience/LinearAlgebraLibraries] can be
installed. To configure which libblas is being used:

$ sudo update-alternatives --config libblas.so

atlas

ATLAS BLAS APIs [http://math-atlas.sourceforge.net/] will be used the path
returned by pkg-config --libs blas contains atlas.

Example:

$ pkg-config --libs blas
-L/usr/lib/atlas-base/atlas -lblas
$./waf configure --enable-atlas
[...]
Checking for 'blas' : yes
Checking for header atlas/cblas.h : yes

openblas

OpenBlas libraries [https://www.openblas.net/] will be used when the output
of pkg-config --libs blas contains ‘openblas’,

Example:

$ pkg-config --libs blas
-L/usr/lib/openblas-base -lblas
$./waf configure --enable-atlas
[...]
Checking for 'blas' : yes
Checking for header openblas/cblas.h : yes

libblas

Netlib’s libblas (LAPACK) [https://www.netlib.org/lapack/] will be used if
no specific library path is specified by pkg-config

Example:

$ pkg-config --libs blas
-lblas
$./waf configure --enable-atlas
[...]
Checking for 'blas' : yes
Checking for header cblas.h : yes

Platform notes

On all platforms, you will need to have installed:

	a compiler (gcc, clang, msvc, …)

	python (any version >= 2.7, including 3.x)

	a terminal to run command lines in

Linux

The following External libraries will be used if found: libav [https://libav.org/documentation/general.html#Audio-Codecs],
libsamplerate [http://www.mega-nerd.com/SRC/], libsndfile [http://www.mega-nerd.com/libsndfile/], libfftw3.

macOS

The following system frameworks will be used on Mac OS X systems:

	Accelerate [https://developer.apple.com/reference/accelerate] to compute
FFTs and other vectorized operations optimally.

	CoreAudio [https://developer.apple.com/reference/coreaudio] and
AudioToolbox [https://developer.apple.com/reference/audiotoolbox] to
decode audio from files and network streams.

Note

To build a fat binary for both i386 and x86_64, use ./waf configure
--enable-fat.

The following External libraries will also be checked: libav [https://libav.org/documentation/general.html#Audio-Codecs],
libsamplerate [http://www.mega-nerd.com/SRC/], libsndfile [http://www.mega-nerd.com/libsndfile/], libfftw3.

To build a fat binary on a darwin like system (macOS, tvOS, appleOS, …)
platforms, configure with --enable-fat.

Windows

To use a specific version of the compiler, --msvc_version. To build for a
specific architecture, use --msvc_target. For instance, to build aubio
for x86 using msvc 12.0, use:

waf configure --msvc_version='msvc 12.0' --msvc_target='x86'

The following External libraries will be used if found: libav [https://libav.org/documentation/general.html#Audio-Codecs],
libsamplerate [http://www.mega-nerd.com/SRC/], libsndfile [http://www.mega-nerd.com/libsndfile/], libfftw3.

iOS

The following system frameworks will be used on iOS and iOS Simulator.

	Accelerate [https://developer.apple.com/reference/accelerate] to compute
FFTs and other vectorized operations optimally.

	CoreAudio [https://developer.apple.com/reference/coreaudio] and
AudioToolbox [https://developer.apple.com/reference/audiotoolbox] to
decode audio from files and network streams.

To build aubio for iOS, configure with --with-target-platform=ios. For the
iOS Simulator, use --with-target-platform=iosimulator instead.

By default, aubio is built with the following flags on iOS:

CFLAGS="-fembed-bitcode -arch arm64 -arch armv7 -arch armv7s -miphoneos-version-min=6.1"

and on iOS Simulator:

CFLAGS="-arch i386 -arch x86_64 -mios-simulator-version-min=6.1"

Set CFLAGS and LINKFLAGS to change these default values, or edit
wscript directly.

Other options

Some additional options can be passed to the configure step. For the complete
list of options, run:

$./waf --help

Here is an example of a custom command:

$./waf --verbose configure build install \
 --enable-avcodec --enable-wavread --disable-wavwrite \
 --enable-sndfile --enable-samplerate --enable-docs \
 --destdir $PWD/build/destdir --testcmd="echo %s" \
 --prefix=/opt --libdir=/opt/lib/multiarch \
 --manpagesdir=/opt/share/man \
 uninstall clean distclean dist distcheck

Double precision

The datatype used to store real numbers in aubio is named smpl_t. By default,
smpl_t is defined as float, a single-precision format [https://en.wikipedia.org/wiki/Single-precision_floating-point_format]
(32-bit). Some algorithms require a floating point representation with a
higher precision, for instance to prevent arithmetic underflow in recursive
filters. In aubio, these special samples are named lsmp_t and defined as
double by default (64-bit).

Sometimes it may be useful to compile aubio in double-precision, for instance
to reproduce numerical results obtained with 64-bit routines. In this case,
smpl_t will be defined as double.

The following table shows how smpl_t and lsmp_t are defined in single- and
double-precision modes:

Single and double-precision modes

	
	single

	double

	smpl_t

	float

	double

	lsmp_t

	double

	long double

To compile aubio in double precision mode, configure with --enable-double.

To compile in single-precision mode (default), use --disable-double (or
simply none of these two options).

Disabling the tests

In some case, for instance when cross-compiling, unit tests should not be run.
Option --notests can be used for this purpose. The tests will not be
executed, but the binaries will be compiled, ensuring that linking against
libaubio works as expected.

Note

The --notests option should be passed to both build and install
targets, otherwise waf will try to run them.

Edit wscript

Many of the options are gathered in the file wscript. a good starting point
when looking for additional options.

Building the docs

If the following command line tools are found, the documentation will be built
built:

	doxygen [http://doxygen.org] to build the Doxygen documentation.

	txt2man [https://github.com/mvertes/txt2man] to build the Command line tools

	sphinx [http://sphinx-doc.org] to build this document

These tools are searched for in the current PATH environment variable.
By default, the documentation is built only if the tools are found.

To disable the documentation, configure with --disable-docs. To build with
the documentation, configure with --enable-docs.

Installing aubio for Python

aubio is available as a package for Python 2.7 and Python 3. The aubio
extension is written C using the Python/C [https://docs.python.org/c-api/index.html] and the Numpy/C [https://docs.scipy.org/doc/numpy/reference/c-api.html] APIs.

For general documentation on how to install Python packages, see Installing
Packages [https://packaging.python.org/tutorials/installing-packages/].

Installing aubio with pip

aubio can be installed from PyPI [https://pypi.python.org/pypi/aubio] using pip:

$ pip install aubio

See also Installing from PyPI [https://packaging.python.org/tutorials/installing-packages/#installing-from-pypi] for general documentation.

Note

aubio is currently a source only [https://packaging.python.org/tutorials/installing-packages/#source-distributions-vs-wheels] package, so you will need a compiler to
install it from PyPI [https://pypi.python.org/pypi/aubio]. See also Installing aubio with conda for
pre-compiled binaries.

Installing aubio with conda

Conda packages [https://anaconda.org/conda-forge/aubio] are available through the conda-forge [https://conda-forge.org/] channel for Linux,
macOS, and Windows:

$ conda config --add channels conda-forge
$ conda install -c conda-forge aubio

Double precision

This module can be compiled in double-precision mode, in which case the
default type for floating-point samples will be 64-bit. The default is
single precision mode (32-bit, recommended).

To build the aubio module with double precision, use the option
–enable-double of the build_ext subcommand:

$./setup.py clean
$./setup.py build_ext --enable-double
$ pip install -v .

Note: If linking against libaubio, make sure the library was also
compiled in Double precision mode.

Checking your installation

Once the python module is installed, its version can be checked with:

$ python -c "import aubio; print(aubio.version, aubio.float_type)"

The command line aubio is also installed:

$ aubio -h

Python tests

A number of Python tests are provided in the python tests [https://github.com/aubio/aubio/blob/master/python/tests]. To run them,
install nose2 [https://github.com/nose-devs/nose2] and run the script python/tests/run_all_tests:

$ pip install nose2
$./python/tests/run_all_tests

Python documentation

This module provides a number of classes and functions for the analysis of
music and audio signals.

Contents

	Data-types

	Input/Output

	Utilities

	Examples

Introduction

This document provides a reference guide. For documentation on how to
install aubio, see Installing aubio for Python.

Examples included in this guide and within the code are written assuming
both aubio and numpy [https://www.numpy.org] have been imported:

>>> import aubio
>>> import numpy as np

Changed in 0.4.8 : Prior to this version, almost no documentation was
provided with the python module. This version adds documentation for some
classes, including fvec, cvec, source, and
sink.

Data-types

This section contains the documentation for float_type,
fvec, and cvec.

	
aubio.float_type

	A string constant describing the floating-point representation used in
fvec, cvec, and elsewhere in this module.

Defaults to “float32”.

If aubio was built specifically with the option –enable-double, this
string will be defined to “float64”. See Double precision in
Installing aubio for Python for more details on building aubio in double
precision mode.

Examples

>>> aubio.float_type
'float32'
>>> numpy.zeros(10).dtype
'float64'
>>> aubio.fvec(10).dtype
'float32'
>>> np.arange(10, dtype=aubio.float_type).dtype
'float32'

	
class aubio.fvec(input_arg=1024)

	A vector holding float samples.

If input_arg is an int, a 1-dimensional vector of length input_arg
will be created and filled with zeros. Otherwise, if input_arg is an
array_like object, it will be converted to a 1-dimensional vector of
type float_type.

	Parameters

	input_arg (int or array_like) – Can be a positive integer, or any object that can be converted to
a numpy array with numpy.array() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html#numpy.array].

Examples

>>> aubio.fvec(10)
array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], dtype=float32)
>>> aubio.fvec([0,1,2])
array([0., 1., 2.], dtype=float32)
>>> a = np.arange(10); type(a), type(aubio.fvec(a))
(<class 'numpy.ndarray'>, <class 'numpy.ndarray'>)
>>> a.dtype, aubio.fvec(a).dtype
(dtype('int64'), dtype('float32'))

Notes

In the Python world, fvec is simply a subclass of
numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]. In practice, any 1-dimensional numpy.ndarray of
dtype float_type may be passed to methods accepting
fvec as parameter. For instance, sink() or pvoc().

See also

	cvec

	a container holding spectral data

	numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

	parent class of fvec

	numpy.zeros

	create a numpy array filled with zeros

	numpy.array

	create a numpy array from an existing object

	
class aubio.cvec(size)

	A container holding spectral data.

Create one cvec to store the spectral information of a window
of size points. The data will be stored in two vectors,
phas and norm, each of shape (length,),
with length = size // 2 + 1.

	Parameters

	size (int) – Size of spectrum to create.

Examples

>>> c = aubio.cvec(1024)
>>> c
aubio cvec of 513 elements
>>> c.length
513
>>> c.norm.dtype, c.phas.dtype
(dtype('float32'), dtype('float32'))
>>> c.norm.shape, c.phas.shape
((513,), (513,))

See also

fvec, fft, pvoc

	
length

	Length of norm and phas vectors.

	Type

	int

	
norm

	Vector of shape (length,) containing the magnitude.

	Type

	numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
phas

	Vector of shape (length,) containing the phase.

	Type

	numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

Input/Output

This section contains the documentation for two classes:
source, to read audio samples from files, and sink,
to write audio samples to disk.

	
class aubio.source(path, samplerate=0, hop_size=512, channels=0)

	Read audio samples from a media file.

source open the file specified in path and creates a callable
returning hop_size new audio samples at each invocation.

If samplerate=0 (default), the original sampling rate of path
will be used. Otherwise, the output audio samples will be
resampled at the desired sampling-rate.

If channels=0 (default), the original number of channels
in path will be used. Otherwise, the output audio samples
will be down-mixed or up-mixed to the desired number of
channels.

If path is a URL, a remote connection will be attempted to
open the resource and stream data from it.

The parameter hop_size determines how many samples should be
read at each consecutive calls.

	Parameters

	
	path (str) – pathname (or URL) of the file to be opened for reading

	samplerate (int, optional) – sampling rate of the file

	hop_size (int, optional) – number of samples to be read per iteration

	channels (int, optional) – number of channels of the file

Examples

By default, when only path is given, the file will be opened
with its original sampling rate and channel:

>>> src = aubio.source('stereo.wav')
>>> src.uri, src.samplerate, src.channels, src.duration
('stereo.wav', 48000, 2, 86833)

A typical loop to read all samples from a local file could
look like this:

>>> src = aubio.source('stereo.wav')
>>> total_read = 0
>>> while True:
... samples, read = src()
... # do something with samples
... total_read += read
... if read < src.hop_size:
... break
...

In a more Pythonic way, it can also look like this:

>>> total_read = 0
>>> with aubio.source('stereo.wav') as src:
... for frames in src:
... total_read += samples.shape[-1]
...

Basic interface

source is a callable; its __call__() method
returns a tuple containing:

	a vector of shape (hop_size,), filled with the read next
samples available, zero-padded if read < hop_size

	read, an integer indicating the number of samples read

To read the first hop_size samples from the source, simply call
the instance itself, with no argument:

>>> src = aubio.source('song.ogg')
>>> samples, read = src()
>>> samples.shape, read, src.hop_size
((512,), 512, 512)

The first call returned the slice of samples [0 : hop_size].
The next call will return samples [hop_size: 2*hop_size].

After several invocations of __call__(), when reaching the end
of the opened stream, read might become less than hop_size:

>>> samples, read = src()
>>> samples.shape, read
((512,), 354)

The end of the vector samples is filled with zeros.

After the end of the stream, read will be 0 since no more
samples are available:

>>> samples, read = src()
>>> samples.shape, read
((512,), 0)

Note: when the source has more than one channels, they
are be down-mixed to mono when invoking __call__().
To read from each individual channel, see __next__().

for statements

The source objects are iterables. This allows using them
directly in a for loop, which calls __next__() until
the end of the stream is reached:

>>> src = aubio.source('stereo.wav')
>>> for frames in src:
>>> print (frames.shape)
...
(2, 512)
(2, 512)
(2, 230)

Note: When next(self) is called on a source with multiple
channels, an array of shape (channels, read) is returned,
unlike with __call__() which always returns the down-mixed
channels.

If the file is opened with a single channel, next(self) returns
an array of shape (read,):

>>> src = aubio.source('stereo.wav', channels=1)
>>> next(src).shape
(512,)

with statements

The source objects are context managers, which allows using
them in with statements:

>>> with aubio.source('audiotrack.wav') as source:
... n_frames=0
... for samples in source:
... n_frames += len(samples)
... print('read', n_frames, 'samples in', samples.shape[0], 'channels',
... 'from file "%%s"' %% source.uri)
...
read 239334 samples in 2 channels from file "audiotrack.wav"

The file will be closed before exiting the statement.

See also the methods implementing the context manager,
__enter__() and __exit__().

Seeking and closing

At any time, seek() can be used to move to any position in
the file. For instance, to rewind to the start of the stream:

>>> src.seek(0)

The opened file will be automatically closed when the object falls
out of scope and is scheduled for garbage collection.

In some cases, it is useful to manually close() a given source,
for instance to limit the number of simultaneously opened files:

>>> src.close()

Input formats

Depending on how aubio was compiled, source may or may not
open certain files format. Below are some examples that assume
support for compressed files and remote urls was compiled in:

	open a local file using its original sampling rate and channels,
and with the default hop size:

>>> s = aubio.source('sample.wav')
>>> s.uri, s.samplerate, s.channels, s.hop_size
('sample.wav', 44100, 2, 512)

	open a local compressed audio file, resampling to 32000Hz if needed:

>>> s = aubio.source('song.mp3', samplerate=32000)
>>> s.uri, s.samplerate, s.channels, s.hop_size
('song.mp3', 32000, 2, 512)

	open a local video file, down-mixing and resampling it to 16kHz:

>>> s = aubio.source('movie.mp4', samplerate=16000, channels=1)
>>> s.uri, s.samplerate, s.channels, s.hop_size
('movie.mp4', 16000, 1, 512)

	open a remote resource, with hop_size = 1024:

>>> s = aubio.source('https://aubio.org/drum.ogg', hop_size=1024)
>>> s.uri, s.samplerate, s.channels, s.hop_size
('https://aubio.org/drum.ogg', 48000, 2, 1024)

See also

	sink

	write audio samples to a file.

	
__call__()

	Read at most hop_size new samples from self, return them in
a tuple with the number of samples actually read.

The returned tuple contains:

	a vector of shape (hop_size,), filled with the read next
samples available, zero-padded if read < hop_size

	read, an integer indicating the number of samples read

If opened with more than one channel, the frames will be
down-mixed to produce the new samples.

	Returns

	A tuple of one array of samples and one integer.

	Return type

	(array, int)

See also

__next__()

Example

>>> src = aubio.source('stereo.wav')
>>> while True:
... samples, read = src()
... if read < src.hop_size:
... break

	
__next__()

	Read at most hop_size new frames from self, return them in
an array.

If source was opened with one channel, next(self) returns
an array of shape (read,), where read is the actual
number of frames read (0 <= read <= hop_size).

If source was opened with more then one channel, the
returned arrays will be of shape (channels, read), where
read is the actual number of frames read (0 <= read <=
hop_size).

	Returns

	A tuple of one array of frames and one integer.

	Return type

	(array, int)

See also

__call__()

Example

>>> for frames in aubio.source('song.flac')
... print(samples.shape)

	
__iter__()

	Implement iter(self).

See also

__next__()

	
__enter__()

	Implement context manager interface. The file will be opened
upon entering the context. See with statement.

Example

>>> with aubio.source('loop.ogg') as src:
... src.uri, src.samplerate, src.channels

	
__exit__()

	Implement context manager interface. The file will be closed
before exiting the context. See with statement.

See also

__enter__()

	
close()

	Close this source now.

Note

Closing twice a source will not raise any exception.

	
do()

	Read vector of audio samples.

If the audio stream in the source has more than one channel,
the channels will be down-mixed.

	Returns

	
	samples (numpy.ndarray) – fvec of size hop_size containing the new samples.

	read (int) – Number of samples read from the source, equals to hop_size
before the end-of-file is reached, less when it is reached,
and 0 after.

See also

do_multi()

Examples

>>> src = aubio.source('sample.wav', hop_size=1024)
>>> src.do()
(array([-0.00123001, -0.00036685, 0.00097106, ..., -0.2031033 ,
 -0.2025854 , -0.20221856], dtype=float32), 1024)

	
do_multi()

	Read multiple channels of audio samples.

If the source was opened with the same number of channels
found in the stream, each channel will be read individually.

If the source was opened with less channels than the number
of channels in the stream, only the first channels will be read.

If the source was opened with more channels than the number
of channel in the original stream, the first channels will
be duplicated on the additional output channel.

	Returns

	
	samples (numpy.ndarray) – NumPy array of shape (hop_size, channels) containing the new
audio samples.

	read (int) – Number of samples read from the source, equals to hop_size
before the end-of-file is reached, less when it is reached,
and 0 after.

See also

do()

Examples

>>> src = aubio.source('sample.wav')
>>> src.do_multi()
(array([[0.00668335, 0.0067749 , 0.00714111, ..., -0.05737305,
 -0.05856323, -0.06018066],
 [-0.00842285, -0.0072937 , -0.00576782, ..., -0.09405518,
 -0.09558105, -0.09725952]], dtype=float32), 512)

	
get_channels()

	Get number of channels in source.

	Returns

	Number of channels.

	Return type

	int

	
get_samplerate()

	Get sampling rate of source.

	Returns

	Sampling rate, in Hz.

	Return type

	int

	
seek(position)

	Seek to position in file.

If the source was not opened with its original sampling-rate,
position corresponds to the position in the re-sampled file.

	Parameters

	position (str) – position to seek to, in samples

	
channels

	number of channels

	Type

	int (read-only)

	
duration

	total number of frames in the source

Can be estimated, for instance if the opened stream is
a compressed media or a remote resource.

Example

>>> n = 0
>>> src = aubio.source('track1.mp3')
>>> for samples in src:
... n += samples.shape[-1]
...
>>> n, src.duration
(9638784, 9616561)

	Type

	int (read-only)

	
hop_size

	number of samples read per iteration

	Type

	int (read-only)

	
samplerate

	sampling rate

	Type

	int (read-only)

	
uri

	pathname or URL

	Type

	str (read-only)

	
class aubio.sink(path, samplerate=44100, channels=1)

	Write audio samples to file.

	Parameters

	
	path (str) – Pathname of the file to be opened for writing.

	samplerate (int) – Sampling rate of the file, in Hz.

	channels (int) – Number of channels to create the file with.

Examples

Create a new sink at 44100Hz, mono:

>>> snk = aubio.sink('out.wav')

Create a new sink at 32000Hz, stereo, write 100 samples into it:

>>> snk = aubio.sink('out.wav', samplerate=16000, channels=3)
>>> snk(aubio.fvec(100), 100)

Open a new sink at 48000Hz, stereo, write 1234 samples into it:

>>> with aubio.sink('out.wav', samplerate=48000, channels=2) as src:
... snk(aubio.fvec(1024), 1024)
... snk(aubio.fvec(210), 210)
...

See also

	source

	read audio samples from a file.

	
__call__(vec, length)

	Write length samples from vec.

	Parameters

	
	vec (array) – input vector to write from

	length (int) – number of samples to write

	Example

	

>>> with aubio.sink('foo.wav') as snk:
... snk(aubio.fvec(1025), 1025)

	
close()

	Close this sink now.

By default, the sink will be closed before being deleted.
Explicitely closing a sink can be useful to control the number
of files simultaneously opened.

	
do(vec, write)

	Write a single channel vector to sink.

	Parameters

	
	vec (fvec) – input vector (n,) where n >= 0.

	write (int) – Number of samples to write.

	
do_multi(mat, write)

	Write a matrix containing vectors from multiple channels to sink.

	Parameters

	
	mat (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – input matrix of shape (channels, n), where n >= 0.

	write (int) – Number of frames to write.

	
channels

	Number of channels with which the sink was created.

	Type

	int (read-only)

	
samplerate

	Samplerate at which the sink was created.

	Type

	int (read-only)

	
uri

	Path at which the sink was created.

	Type

	str (read-only)

Utilities

This section documents various helper functions included in the aubio library.

Note name conversion

	
aubio.note2midi(note)

	Convert note name to midi note number.

Input string note should be composed of one note root
and one octave, with optionally one modifier in between.

List of valid components:

	note roots: C, D, E, F, G, A, B,

	modifiers: b, #, as well as unicode characters
𝄫, ♭, ♮, ♯ and 𝄪,

	octave numbers: -1 -> 11.

	Parameters

	note (str) – note name

	Returns

	corresponding midi note number

	Return type

	int

Examples

>>> aubio.note2midi('C#4')
61
>>> aubio.note2midi('B♭5')
82

	Raises

	
	TypeError – If note was not a string.

	ValueError – If an error was found while converting note.

See also

midi2note(), freqtomidi(), miditofreq()

	
aubio.midi2note(midi)

	Convert midi note number to note name.

	Parameters

	midi (int [0, 128]) – input midi note number

	Returns

	note name

	Return type

	str

Examples

>>> aubio.midi2note(70)
'A#4'
>>> aubio.midi2note(59)
'B3'

	Raises

	
	TypeError – If midi was not an integer.

	ValueError – If midi is out of the range [0, 128].

See also

note2midi(), miditofreq(), freqtomidi()

	
aubio.freq2note(freq)

	Convert frequency in Hz to nearest note name.

	Parameters

	freq (float [0, 23000[) – input frequency, in Hz

	Returns

	name of the nearest note

	Return type

	str

Example

>>> aubio.freq2note(440)
'A4'
>>> aubio.freq2note(220.1)
'A3'

	
aubio.note2freq(note)

	Convert note name to corresponding frequency, in Hz.

	Parameters

	note (str) – input note name

	Returns

	freq – frequency, in Hz

	Return type

	float [0, 23000[

Example

>>> aubio.note2freq('A4')
440
>>> aubio.note2freq('A3')
220.1

Frequency conversion

	
aubio.freqtomidi(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj])

	Convert frequency [0; 23000[to midi [0; 128[.

	Parameters

	x (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Array of frequencies, in Hz.

	Returns

	Converted frequencies, in midi note.

	Return type

	numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
aubio.miditofreq(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj])

	Convert midi [0; 128[to frequency [0, 23000].

	Parameters

	x (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Array of frequencies, in midi note.

	Returns

	Converted frequencies, in Hz

	Return type

	numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
aubio.meltohz(m, htk=False)

	Convert a scalar from mel scale to frequency.

	Parameters

	
	m (float) – input mel

	htk (bool) – if True, use Htk mel scale instead of Slaney.

	Returns

	output frequency, in Hz

	Return type

	float

See also

hztomel()

	
aubio.hztomel(f, htk=False)

	Convert a scalar from frequency to mel scale.

	Parameters

	
	m (float) – input frequency, in Hz

	htk (bool) – if True, use Htk mel scale instead of Slaney.

	Returns

	output mel

	Return type

	float

See also

meltohz()

	
aubio.bintomidi(fftbin, samplerate, fftsize)

	Convert FFT bin to frequency in midi note, given the sampling rate
and the size of the FFT.

	Parameters

	
	fftbin (float) – input frequency bin

	samplerate (float) – sampling rate of the signal

	fftsize (float) – size of the FFT

	Returns

	Frequency converted to midi note.

	Return type

	float

Example

>>> aubio.bintomidi(10, 44100, 1024)
68.62871551513672

	
aubio.miditobin(midi, samplerate, fftsize)

	Convert frequency in midi note to FFT bin, given the sampling rate
and the size of the FFT.

	Parameters

	
	midi (float) – input frequency, in midi note

	samplerate (float) – sampling rate of the signal

	fftsize (float) – size of the FFT

	Returns

	Frequency converted to FFT bin.

	Return type

	float

Examples

>>> aubio.miditobin(69, 44100, 1024)
10.216779708862305
>>> aubio.miditobin(75.08, 32000, 512)
10.002175331115723

	
aubio.bintofreq(fftbin, samplerate, fftsize)

	Convert FFT bin to frequency in Hz, given the sampling rate
and the size of the FFT.

	Parameters

	
	fftbin (float) – input frequency bin

	samplerate (float) – sampling rate of the signal

	fftsize (float) – size of the FFT

	Returns

	Frequency converted to Hz.

	Return type

	float

Example

>>> aubio.bintofreq(10, 44100, 1024)
430.6640625

	
aubio.freqtobin(freq, samplerate, fftsize)

	Convert frequency in Hz to FFT bin, given the sampling rate
and the size of the FFT.

	Parameters

	
	midi (float) – input frequency, in midi note

	samplerate (float) – sampling rate of the signal

	fftsize (float) – size of the FFT

	Returns

	Frequency converted to FFT bin.

	Return type

	float

Examples

>>> aubio.freqtobin(440, 44100, 1024)
10.216779708862305

Audio file slicing

	
aubio.slice_source_at_stamps(source_file, timestamps, timestamps_end=None, output_dir=None, samplerate=0, hopsize=256, create_first=False)

	Slice a sound file at given timestamps.

This function reads source_file and creates slices, new smaller
files each starting at t in timestamps, a list of integer
corresponding to time locations in source_file, in samples.

If timestamps_end is unspecified, the slices will end at
timestamps_end[n] = timestamps[n+1]-1, or the end of file.
Otherwise, timestamps_end should be a list with the same length
as timestamps containing the locations of the end of each slice.

If output_dir is unspecified, the new slices will be written in
the current directory. If output_dir is a string, new slices
will be written in output_dir, after creating the directory if
required.

The default samplerate is 0, meaning the original sampling rate
of source_file will be used. When using a sampling rate
different to the one of the original files, timestamps and
timestamps_end should be expressed in the re-sampled signal.

The hopsize parameter simply tells source to use this
hopsize and does not change the output slices.

If create_first is True and timestamps does not start with 0, the
first slice from 0 to timestamps[0] - 1 will be automatically added.

	Parameters

	
	source_file (str) – path of the resource to slice

	timestamps (list of int) – time stamps at which to slice, in samples

	timestamps_end (list of int (optional)) – time stamps at which to end the slices

	output_dir (str (optional)) – output directory to write the slices to

	samplerate (int (optional)) – samplerate to read the file at

	hopsize (int (optional)) – number of samples read from source per iteration

	create_first (bool (optional)) – always create the slice at the start of the file

Examples

Create two slices: the first slice starts at the beginning of the
input file loop.wav and lasts exactly one second, starting at
sample 0 and ending at sample 44099; the second slice starts
at sample 44100 and lasts until the end of the input file:

>>> aubio.slice_source_at_stamps('loop.wav', [0, 44100])

Create one slice, from 1 second to 2 seconds:

>>> aubio.slice_source_at_stamps('loop.wav', [44100], [44100 * 2 - 1])

Notes

Slices may be overlapping. If timestamps_end is 1 element
shorter than timestamps, the last slice will end at the end of
the file.

Windowing

	
aubio.window(window_type, size)

	Create a window of length size. window_type should be one
of the following:

	default (same as hanningz).

	ones

	rectangle

	hamming

	hanning

	hanningz 1

	blackman

	blackman_harris

	gaussian

	welch

	parzen

	Parameters

	
	window_type (str) – Type of window.

	size (int) – Length of window.

	Returns

	Array of shape (length,) containing the new window.

	Return type

	fvec

See also

pvoc(), fft()

Examples

Compute a zero-phase Hann window on 1024 points:

>>> aubio.window('hanningz', 1024)
array([0.00000000e+00, 9.41753387e-06, 3.76403332e-05, ...,
 8.46982002e-05, 3.76403332e-05, 9.41753387e-06], dtype=float32)

Plot different window types with matplotlib [https://matplotlib.org/]:

>>> import matplotlib.pyplot as plt
>>> modes = ['default', 'ones', 'rectangle', 'hamming', 'hanning',
... 'hanningz', 'blackman', 'blackman_harris', 'gaussian',
... 'welch', 'parzen']; n = 2048
>>> for m in modes: plt.plot(aubio.window(m, n), label=m)
...
>>> plt.legend(); plt.show()

Note

The following examples contain the equivalent source code to compute
each type of window with NumPy [https://numpy.org]:

>>> n = 1024; x = np.arange(n, dtype=aubio.float_type)
>>> ones = np.ones(n).astype(aubio.float_type)
>>> rectangle = 0.5 * ones
>>> hanning = 0.5 - 0.5 * np.cos(2 * np.pi * x / n)
>>> hanningz = 0.5 * (1 - np.cos(2 * np.pi * x / n))
>>> hamming = 0.54 - 0.46 * np.cos(2.*np.pi * x / (n - 1))
>>> blackman = 0.42 \
... - 0.50 * np.cos(2 * np.pi * x / (n - 1)) \
... + 0.08 * np.cos(4 * np.pi * x / (n - 1))
>>> blackman_harris = 0.35875 \
... - 0.48829 * np.cos(2 * np.pi * x / (n - 1)) \
... + 0.14128 * np.cos(4 * np.pi * x / (n - 1)) \
... + 0.01168 * np.cos(6 * np.pi * x / (n - 1))
>>> gaussian = np.exp(- 0.5 * ((x - 0.5 * (n - 1)) \
... / (0.25 * (n - 1)))**2)
>>> welch = 1 - ((2 * x - n) / (n + 1))**2
>>> parzen = 1 - np.abs((2 * x - n) / (n + 1))
>>> default = hanningz

References

	1

	Amalia de Götzen, Nicolas Bernardini, and Daniel Arfib. Traditional
(?) implementations of a phase vocoder: the tricks of the trade.
In Proceedings of the International Conference on Digital Audio
Effects (DAFx-00), pages 37–44, University of Verona, Italy, 2000.
(online version [https://www.cs.princeton.edu/courses/archive/spr09/cos325/Bernardini.pdf]).

Audio level detection

	
aubio.level_lin(x)

	Compute sound pressure level of x, on a linear scale.

	Parameters

	x (fvec) – input vector

	Returns

	Linear level of x.

	Return type

	float

Example

>>> aubio.level_lin(aubio.fvec(numpy.ones(1024)))
1.0

Note

Computed as the average of the squared amplitudes:

\[L = \frac {\sum_{n=0}^{N-1} {x_n}^2} {N}\]

See also

db_spl(), silence_detection(), level_detection()

	
aubio.db_spl(x)

	Compute Sound Pressure Level (SPL) of x, in dB.

	Parameters

	x (fvec) – input vector

	Returns

	Level of x, in dB SPL.

	Return type

	float

Example

>>> aubio.db_spl(aubio.fvec(np.ones(1024)))
1.0
>>> aubio.db_spl(0.7*aubio.fvec(np.ones(32)))
-3.098040819168091

Note

Computed as log10 of level_lin():

\[{SPL}_{dB} = log10{\frac {\sum_{n=0}^{N-1}{x_n}^2} {N}}\]

This quantity is often incorrectly called ‘loudness’.

See also

level_lin(), silence_detection(), level_detection()

	
aubio.silence_detection(vec, level)

	Check if level of vec, in dB SPL, is under a given threshold.

	Parameters

	
	vec (fvec) – input vector

	level (float) – level threshold, in dB SPL

	Returns

	1 if level of vec, in dB SPL, is under level,
0 otherwise.

	Return type

	int

Examples

>>> aubio.silence_detection(aubio.fvec(32), -100.)
1
>>> aubio.silence_detection(aubio.fvec(np.ones(32)), 0.)
0

See also

level_detection(), db_spl(), level_lin()

	
aubio.level_detection(vec, level)

	Check if vec is above threshold level, in dB SPL.

	Parameters

	
	vec (fvec) – input vector

	level (float) – level threshold, in dB SPL

	Returns

	1.0 if level of vec in dB SPL is under level,
db_spl(vec) otherwise.

	Return type

	float

Example

>>> aubio.level_detection(0.7*aubio.fvec(np.ones(1024)), -3.)
1.0
>>> aubio.level_detection(0.7*aubio.fvec(np.ones(1024)), -4.)
-3.0980708599090576

See also

silence_detection(), db_spl(), level_lin()

Vector utilities

	
aubio.alpha_norm(vec, alpha)

	Compute alpha normalisation factor of vector vec.

	Parameters

	
	vec (fvec) – input vector

	alpha (float) – norm factor

	Returns

	p-norm of the input vector, where p=alpha

	Return type

	float

Example

>>> a = aubio.fvec(np.arange(10)); alpha = 2
>>> aubio.alpha_norm(a, alpha), (sum(a**alpha)/len(a))**(1./alpha)
(5.338539123535156, 5.338539126015656)

Note

Computed as:

\[l_{\alpha} =
 \|\frac{\sum_{n=0}^{N-1}{{x_n}^{\alpha}}}{N}\|^{1/\alpha}\]

	
aubio.zero_crossing_rate(vec)

	Compute zero-crossing rate of vec.

	Parameters

	vec (fvec) – input vector

	Returns

	Zero-crossing rate.

	Return type

	float

Example

>>> a = np.linspace(-1., 1., 1000, dtype=aubio.float_type)
>>> aubio.zero_crossing_rate(a), 1/1000
(0.0010000000474974513, 0.001)

	
aubio.min_removal(vec)

	Remove the minimum value of a vector to each of its element.

Modifies the input vector in-place and returns a reference to it.

	Parameters

	vec (fvec) – input vector

	Returns

	modified input vector

	Return type

	fvec

Example

>>> aubio.min_removal(aubio.fvec(np.arange(1,4)))
array([0., 1., 2.], dtype=float32)

	
aubio.shift(vec)

	Swap left and right partitions of a vector, in-place.

	Parameters

	vec (fvec) – input vector to shift

	Returns

	The swapped vector.

	Return type

	fvec

Notes

The input vector is also modified.

For a vector of length N, the partition is split at index N - N//2.

Example

>>> aubio.shift(aubio.fvec(np.arange(3)))
array([2., 0., 1.], dtype=float32)

See also

ishift()

	
aubio.ishift(vec)

	Swap right and left partitions of a vector, in-place.

	Parameters

	vec (fvec) – input vector to shift

	Returns

	The swapped vector.

	Return type

	fvec

Notes

The input vector is also modified.

Unlike with shift(), the partition is split at index N//2.

Example

>>> aubio.ishift(aubio.fvec(np.arange(3)))
array([1., 2., 0.], dtype=float32)

See also

shift()

	
aubio.unwrap2pi(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj])

	Map angle to unit circle \([-\pi, \pi[\).

	Parameters

	x (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – input array

	Returns

	values clamped to the unit circle \([-\pi, \pi[\)

	Return type

	numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

Examples

Below is a short selection of examples using the aubio module.

Read a sound file

Here is a simple script, demo_source_simple.py that reads all the samples from a
media file using source:

#! /usr/bin/env python

"""A simple example using aubio.source."""

import sys
import aubio

samplerate = 0 # use original source samplerate
hop_size = 256 # number of frames to read in one block
src = aubio.source(sys.argv[1], samplerate, hop_size)
total_frames = 0

while True:
 samples, read = src() # read hop_size new samples from source
 total_frames += read # increment total number of frames
 if read < hop_size: # end of file reached
 break

fmt_string = "read {:d} frames at {:d}Hz from {:s}"
print(fmt_string.format(total_frames, src.samplerate, src.uri))

Filter a sound file

Here is another example, demo_filter.py, which applies a filter to a sound file
and writes the filtered signal in another file:

	read audio samples from a file with source

	filter them using an A-weighting [https://en.wikipedia.org/wiki/A-weighting]
filter using digital_filter

	write the filtered samples to a new file with sink.

#! /usr/bin/env python

import sys
import os.path
import aubio

def apply_filter(path, target):
 # open input file, get its samplerate
 s = aubio.source(path)
 samplerate = s.samplerate

 # create an A-weighting filter
 f = aubio.digital_filter(7)
 f.set_a_weighting(samplerate)

 # create output file
 o = aubio.sink(target, samplerate)

 total_frames = 0
 while True:
 # read from source
 samples, read = s()
 # filter samples
 filtered_samples = f(samples)
 # write to sink
 o(filtered_samples, read)
 # count frames read
 total_frames += read
 # end of file reached
 if read < s.hop_size:
 break

 # print some info
 duration = total_frames / float(samplerate)
 input_str = "input: {:s} ({:.2f} s, {:d} Hz)"
 output_str = "output: {:s}, A-weighting filtered ({:d} frames total)"
 print(input_str.format(s.uri, duration, samplerate))
 print(output_str.format(o.uri, total_frames))

if __name__ == '__main__':
 usage = "{:s} <input_file> [output_file]".format(sys.argv[0])
 if not 1 < len(sys.argv) < 4:
 print(usage)
 sys.exit(1)
 if len(sys.argv) < 3:
 input_path = sys.argv[1]
 basename = os.path.splitext(os.path.basename(input_path))[0] + ".wav"
 output_path = "filtered_" + basename
 else:
 input_path, output_path = sys.argv[1:]
 # run function
 apply_filter(input_path, output_path)

More examples

For more examples showing how to use other components of the module, see
the python demos folder [https://github.com/aubio/aubio/blob/master/python/demos].

Command line tools

The python module comes with the following tools:

	aubio estimate and extract descriptors from sound files

	aubiocut slices sound files at onset or beat timestamps

More command line tools are included along with the library.

	aubioonset outputs the time stamp of detected note onsets

	aubiopitch attempts to identify a fundamental frequency, or pitch, for
each frame of the input sound

	aubiomfcc computes Mel-frequency Cepstrum Coefficients

	aubiotrack outputs the time stamp of detected beats

	aubionotes emits midi-like notes, with an onset, a pitch, and a duration

	aubioquiet extracts quiet and loud regions

aubio

NAME
 aubio - a command line tool to extract information from sound files

SYNOPSIS

 aubio [-h] [-V] <command> ...

COMMANDS

 The general syntax is "aubio <command> <soundfile> [options]". The following
 commands are available:

 onset get onset times
 pitch extract fundamental frequency
 beat get locations of beats
 tempo get overall tempo in bpm
 notes get midi-like notes
 mfcc extract mel-frequency cepstrum coefficients
 melbands extract mel-frequency energies per band

 For a list of available commands, use "aubio -h". For more info about each
 command, use "aubio <command> --help".

GENERAL OPTIONS

 These options can be used before any command has been specified.

 -h, --help show help message and exit

 -V, --version show version

COMMON OPTIONS

 The following options can be used with all commands:

 <source_uri>, -i <source_uri>, --input <source_uri> input sound file to
 analyse (required)

 -r <freq>, --samplerate <freq> samplerate at which the file should be
 represented (default: 0, e.g. samplerate of the input sound)

 -H <size>, --hopsize <size> overlap size, number of samples between two
 consecutive analysis (default: 256)

 -B <size>, --bufsize <size> buffer size, number of samples used for each
 analysis, (e.g. FFT length, default: 512)

 -h, --help show help message and exit

 -T format, --time-format format select time values output format (samples,
 ms, seconds) (default: seconds)

 -v, --verbose be verbose (increment verbosity by 1, default: 1)

 -q, --quiet be quiet (set verbosity to 0)

ONSET

 The following additional options can be used with the "onset" subcommand.

 -m <method>, --method <method> onset novelty function
 <default|energy|hfc|complex|phase|specdiff|kl|mkl|specflux> (default:
 default)

 -t <threshold>, --threshold <threshold> threshold (default: unset)

 -s <value>, --silence <value> silence threshold, in dB (default: -70)

 -M <value>, --minioi <value> minimum Inter-Onset Interval (default: 12ms)

PITCH

 The following additional options can be used with the "pitch" subcommand.

 -m <method>, --method <method> pitch detection method
 <default|yinfft|yin|mcomb|fcomb|schmitt> (default: default, e.g. yinfft)

 -t <threshold>, --threshold <threshold> tolerance (default: unset)

 -s <value>, --silence <value> silence threshold, in dB (default: -70)

 The default buffer size for the beat algorithm is 2048. The default hop size
 is 256.

BEAT

 The "beat" command accepts all common options and no additional options.

 The default buffer size for the beat algorithm is 1024. The default hop size
 is 512.

TEMPO

 The "tempo" command accepts all common options and no additional options.

 The default buffer size for the beat algorithm is 1024. The default hop size
 is 512.

NOTES

 The following additional options can be used with the "notes" subcommand.

 -s <value>, --silence <value> silence threshold, in dB (default: -70)

 -d <value>, --release-drop <value> release drop level, in dB. If the level
 drops more than this amount since the last note started, the note will be
 turned off (default: 10).

MFCC

 The "mfcc" command accepts all common options and no additional options.

MELBANDS

 The "melbands" command accepts all common options and no additional options.

EXAMPLES

 Extract onsets using a minimum inter-onset interval of 30ms:

 aubio onset /path/to/input_file -M 30ms

 Extract pitch with method "mcomb" and a silence threshold of -90dB:

 aubio pitch /path/to/input_file -m mcomb -s -90.0

 Extract MFCC using the standard Slaney implementation:

 aubio mfcc /path/to/input_file -r 44100

SEE ALSO

 aubiocut(1)

AUTHOR

 This manual page was written by Paul Brossier <piem@aubio.org>. Permission is
 granted to copy, distribute and/or modify this document under the terms of
 the GNU General Public License as published by the Free Software Foundation,
 either version 3 of the License, or (at your option) any later version.

aubiocut

NAME
 aubiocut - a command line tool to slice sound files at onset or beat timestamps

SYNOPSIS

 aubiocut source
 aubiocut [[-i] source]
 [-r rate] [-B win] [-H hop]
 [-O method] [-t thres]
 [-b] [-c]
 [-v] [-q] [-h]

OPTIONS

 This program follows the usual GNU command line syntax, with long options
 starting with two dashes (--). A summary of options is included below.

 -i, --input source Run analysis on this audio file. Most uncompressed and
 compressed are supported, depending on how aubio was built.

 -r, --samplerate rate Fetch the input source, resampled at the given
 sampling rate. The rate should be specified in Hertz as an integer. If set
 to 0, the sampling rate of the original source will be used. Defaults to 0.

 -B, --bufsize win The size of the buffer to analyze, that is the length
 of the window used for spectral and temporal computations. Defaults to 512.

 -H, --hopsize hop The number of samples between two consecutive analysis.
 Defaults to 256.

 -O, --onset method The onset detection method to use. See ONSET METHODS
 below. Defaults to 'default'.

 -b, --beat Use beat locations instead of onset locations.

 -t, --onset-threshold thres Set the threshold value for the onset peak
 picking. Values are typically in the range [0.001, 0.900]. Lower threshold
 values imply more onsets detected. Increasing this threshold should reduce
 the number of incorrect detections. Defaults to 0.3.

 -c, --cut Cut input sound file at detected labels. A new sound files for
 each slice will be created in the current directory.

 -o, --output directory Specify the directory path where slices of the
 original source should be created.

 --cut-until-nsamples n How many extra samples should be added at the end of
 each slice (default 0).

 --cut-until-nslices n How many extra slices should be added at the end of
 each slice (default 0).

 --create-first Alway create first slice.

 -h, --help Print a short help message and exit.

 -v, --verbose Be verbose.

 -q, --quiet Be quiet.

ONSET METHODS

 Available methods: default, energy, hfc, complex, phase, specdiff, kl, mkl,
 specflux.

 See aubioonset(1) for details about these methods.

SEE ALSO

 aubioonset(1),
 aubiopitch(1),
 aubiotrack(1),
 aubionotes(1),
 aubioquiet(1),
 and
 aubiomfcc(1).

AUTHOR

 This manual page was written by Paul Brossier <piem@aubio.org>. Permission is
 granted to copy, distribute and/or modify this document under the terms of
 the GNU General Public License as published by the Free Software Foundation,
 either version 3 of the License, or (at your option) any later version.

aubioonset

NAME
 aubioonset - a command line tool to extract musical onset times

SYNOPSIS

 aubioonset source
 aubioonset [[-i] source] [-o sink]
 [-r rate] [-B win] [-H hop]
 [-O method] [-t thres]
 [-T time-format]
 [-s sil] [-m] [-f]
 [-j] [-N miditap-note] [-V miditap-velo]
 [-v] [-h]

DESCRIPTION

 aubioonset attempts to detect onset times, the beginning of discrete sound
 events, in audio signals.

 When started with an input source (-i/--input), the detected onset times are
 given on the console, in seconds.

 When started without an input source, or with the jack option (-j/--jack),
 aubioonset starts in jack mode.

OPTIONS

 This program follows the usual GNU command line syntax, with long options
 starting with two dashes (--). A summary of options is included below.

 -i, --input source Run analysis on this audio file. Most uncompressed and
 compressed are supported, depending on how aubio was built.

 -o, --output sink Save results in this file. The file will be created on
 the model of the input file. Onset times are marked by a short wood-block
 like sound.

 -r, --samplerate rate Fetch the input source, resampled at the given
 sampling rate. The rate should be specified in Hertz as an integer. If 0,
 the sampling rate of the original source will be used. Defaults to 0.

 -B, --bufsize win The size of the buffer to analyze, that is the length
 of the window used for spectral and temporal computations. Defaults to 512.

 -H, --hopsize hop The number of samples between two consecutive analysis.
 Defaults to 256.

 -O, --onset method The onset detection method to use. See ONSET METHODS
 below. Defaults to 'default'.

 -t, --onset-threshold thres Set the threshold value for the onset peak
 picking. Values are typically in the range [0.001, 0.900]. Lower threshold
 values imply more onsets detected. Increasing this threshold should reduce
 the number of incorrect detections. Defaults to 0.3.

 -M, --minioi value Set the minimum inter-onset interval, in seconds, the
 shortest interval between two consecutive onsets. Defaults to 0.020

 -s, --silence sil Set the silence threshold, in dB, under which the onset
 will not be detected. A value of -20.0 would eliminate most onsets but the
 loudest ones. A value of -90.0 would select all onsets. Defaults to -90.0.

 -T, --timeformat format Set time format (samples, ms, seconds). Defaults to
 seconds.

 -m, --mix-input Mix source signal to the output signal before writing to
 sink.

 -f, --force-overwrite Overwrite output file if it already exists.

 -j, --jack Use Jack input/output. You will need a Jack connection
 controller to feed aubio some signal and listen to its output.

 -N, --miditap-note Override note value for MIDI tap. Defaults to 69.

 -V, --miditap-velop Override velocity value for MIDI tap. Defaults to 65.

 -h, --help Print a short help message and exit.

 -v, --verbose Be verbose.

ONSET METHODS

 Available methods are:

 default Default distance, currently hfc

 Default: 'default' (currently set to hfc)

 energy Energy based distance

 This function calculates the local energy of the input spectral frame.

 hfc High-Frequency content

 This method computes the High Frequency Content (HFC) of the input
 spectral frame. The resulting function is efficient at detecting
 percussive onsets.

 Paul Masri. Computer modeling of Sound for Transformation and Synthesis of
 Musical Signal. PhD dissertation, University of Bristol, UK, 1996.

 complex Complex domain onset detection function

 This function uses information both in frequency and in phase to determine
 changes in the spectral content that might correspond to musical onsets.
 It is best suited for complex signals such as polyphonic recordings.

 Christopher Duxbury, Mike E. Davies, and Mark B. Sandler. Complex domain
 onset detection for musical signals. In Proceedings of the Digital Audio
 Effects Conference, DAFx-03, pages 90-93, London, UK, 2003.

 phase Phase based onset detection function

 This function uses information both in frequency and in phase to determine
 changes in the spectral content that might correspond to musical onsets. It
 is best suited for complex signals such as polyphonic recordings.

 Juan-Pablo Bello, Mike P. Davies, and Mark B. Sandler. Phase-based note
 onset detection for music signals. In Proceedings of the IEEE International
 Conference on Acoustics Speech and Signal Processing, pages 441­444,
 Hong-Kong, 2003.

 specdiff Spectral difference onset detection function

 Jonhatan Foote and Shingo Uchihashi. The beat spectrum: a new approach to
 rhythm analysis. In IEEE International Conference on Multimedia and Expo
 (ICME 2001), pages 881­884, Tokyo, Japan, August 2001.

 kl Kulback-Liebler onset detection function

 Stephen Hainsworth and Malcom Macleod. Onset detection in music audio
 signals. In Proceedings of the International Computer Music Conference
 (ICMC), Singapore, 2003.

 mkl Modified Kulback-Liebler onset detection function

 Paul Brossier, ``Automatic annotation of musical audio for interactive
 systems'', Chapter 2, Temporal segmentation, PhD thesis, Centre for
 Digital music, Queen Mary University of London, London, UK, 2006.

 specflux Spectral flux

 Simon Dixon, Onset Detection Revisited, in ``Proceedings of the 9th
 International Conference on Digital Audio Effects'' (DAFx-06), Montreal,
 Canada, 2006.

SEE ALSO

 aubiopitch(1),
 aubiotrack(1),
 aubionotes(1),
 aubioquiet(1),
 aubiomfcc(1),
 and
 aubiocut(1).

AUTHOR

 This manual page was written by Paul Brossier <piem@aubio.org>. Permission is
 granted to copy, distribute and/or modify this document under the terms of
 the GNU General Public License as published by the Free Software Foundation,
 either version 3 of the License, or (at your option) any later version.

aubiopitch

NAME
 aubiopitch - a command line tool to extract musical pitch

SYNOPSIS

 aubiopitch source
 aubiopitch [[-i] source] [-o sink]
 [-r rate] [-B win] [-H hop]
 [-p method] [-u unit] [-l thres]
 [-T time-format]
 [-s sil] [-f]
 [-v] [-h] [-j]

DESCRIPTION

 aubiopitch attempts to detect the pitch, the perceived height of a musical
 note.

 When started with an input source (-i/--input), the detected pitch are
 printed on the console, prefixed by a timestamp in seconds. If no pitch
 candidate is found, the output is 0.

 When started without an input source, or with the jack option (-j/--jack),
 aubiopitch starts in jack mode.

OPTIONS

 This program follows the usual GNU command line syntax, with long options
 starting with two dashes (--). A summary of options is included below.

 -i, --input source Run analysis on this audio file. Most uncompressed and
 compressed are supported, depending on how aubio was built.

 -o, --output sink Save results in this file. The file will be created on
 the model of the input file. The detected frequency is played at the
 detected loudness.

 -r, --samplerate rate Fetch the input source, resampled at the given
 sampling rate. The rate should be specified in Hertz as an integer. If 0,
 the sampling rate of the original source will be used. Defaults to 0.

 -B, --bufsize win The size of the buffer to analyze, that is the length
 of the window used for spectral and temporal computations. Defaults to 2048.

 -H, --hopsize hop The number of samples between two consecutive analysis.
 Defaults to 256.

 -p, --pitch method The pitch detection method to use. See PITCH METHODS
 below. Defaults to 'default'.

 -u, --pitch-unit unit The unit to be used to print frequencies. Possible
 values include midi, bin, cent, and Hz. Defaults to 'Hz'.

 -l, --pitch-tolerance thres Set the tolerance for the pitch detection
 algorithm. Typical values range between 0.2 and 0.9. Pitch candidates found
 with a confidence less than this threshold will not be selected. The higher
 the threshold, the more confidence in the candidates. Defaults to unset.

 -s, --silence sil Set the silence threshold, in dB, under which the onset
 will not be detected. A value of -20.0 would eliminate most onsets but the
 loudest ones. A value of -90.0 would select all onsets. Defaults to -90.0.

 -T, --timeformat format Set time format (samples, ms, seconds). Defaults to
 seconds.

 -m, --mix-input Mix source signal to the output signal before writing to
 sink.

 -f, --force-overwrite Overwrite output file if it already exists.

 -j, --jack Use Jack input/output. You will need a Jack connection
 controller to feed aubio some signal and listen to its output.

 -h, --help Print a short help message and exit.

 -v, --verbose Be verbose.

PITCH METHODS

 Available methods are:

 default use the default method

 Currently, the default method is set to yinfft.

 schmitt Schmitt trigger

 This pitch extraction method implements a Schmitt trigger to estimate the
 period of a signal. It is computationally very inexpensive, but also very
 sensitive to noise.

 fcomb a fast harmonic comb filter

 This pitch extraction method implements a fast harmonic comb filter to
 determine the fundamental frequency of a harmonic sound.

 mcomb multiple-comb filter

 This fundamental frequency estimation algorithm implements spectral
 flattening, multi-comb filtering and peak histogramming.

 specacf Spectral auto-correlation function

 yin YIN algorithm

 This algorithm was developed by A. de Cheveigne and H. Kawahara and
 was first published in:

 De Cheveigné, A., Kawahara, H. (2002) "YIN, a fundamental frequency
 estimator for speech and music", J. Acoust. Soc. Am. 111, 1917-1930.

 yinfft Yinfft algorithm

 This algorithm was derived from the YIN algorithm. In this implementation, a
 Fourier transform is used to compute a tapered square difference function,
 which allows spectral weighting. Because the difference function is tapered,
 the selection of the period is simplified.

 Paul Brossier, Automatic annotation of musical audio for interactive systems,
 Chapter 3, Pitch Analysis, PhD thesis, Centre for Digital music, Queen Mary
 University of London, London, UK, 2006.

 yinfast YIN algorithm (accelerated)

 An optimised implementation of the YIN algorithm, yielding results identical
 to the original YIN algorithm, while reducing its computational cost from
 O(n^2) to O(n log(n)).

SEE ALSO

 aubioonset(1),
 aubiotrack(1),
 aubionotes(1),
 aubioquiet(1),
 aubiomfcc(1),
 and
 aubiocut(1).

AUTHOR

 This manual page was written by Paul Brossier <piem@aubio.org>. Permission is
 granted to copy, distribute and/or modify this document under the terms of
 the GNU General Public License as published by the Free Software Foundation,
 either version 3 of the License, or (at your option) any later version.

aubiomfcc

NAME
 aubiomfcc - a command line tool to compute Mel-Frequency Cepstrum Coefficients

SYNOPSIS

 aubiomfcc source
 aubiomfcc [[-i] source]
 [-r rate] [-B win] [-H hop]
 [-T time-format]
 [-v] [-h]

DESCRIPTION

 aubiomfcc compute the Mel-Frequency Cepstrum Coefficients (MFCC).

 MFCCs are coefficients that make up for the mel-frequency spectrum, a
 representation of the short-term power spectrum of a sound. By default, 13
 coefficients are computed using 40 filters.

 When started with an input source (-i/--input), the coefficients are given on
 the console, prefixed by their timestamps in seconds.

OPTIONS

 This program follows the usual GNU command line syntax, with long options
 starting with two dashes (--). A summary of options is included below.

 -i, --input source Run analysis on this audio file. Most uncompressed and
 compressed are supported, depending on how aubio was built.

 -r, --samplerate rate Fetch the input source, resampled at the given
 sampling rate. The rate should be specified in Hertz as an integer. If 0,
 the sampling rate of the original source will be used. Defaults to 0.

 -B, --bufsize win The size of the buffer to analyze, that is the length
 of the window used for spectral and temporal computations. Defaults to 512.

 -H, --hopsize hop The number of samples between two consecutive analysis.
 Defaults to 256.

 -T, --timeformat format Set time format (samples, ms, seconds). Defaults to
 seconds.

 -h, --help Print a short help message and exit.

 -v, --verbose Be verbose.

REFERENCES

 Using the default parameters, the filter coefficients will be computed
 according to Malcolm Slaney's Auditory Toolbox, available at the following
 url:

 https://engineering.purdue.edu/~malcolm/interval/1998-010/ (see file mfcc.m)

SEE ALSO

 aubioonset(1),
 aubiopitch(1),
 aubiotrack(1),
 aubionotes(1),
 aubioquiet(1),
 and
 aubiocut(1).

AUTHOR

 This manual page was written by Paul Brossier <piem@aubio.org>. Permission is
 granted to copy, distribute and/or modify this document under the terms of
 the GNU General Public License as published by the Free Software Foundation,
 either version 3 of the License, or (at your option) any later version.

aubiotrack

NAME
 aubiotrack - a command line tool to extract musical beats from audio signals

SYNOPSIS

 aubiotrack source
 aubiotrack [[-i] source] [-o sink]
 [-r rate] [-B win] [-H hop]
 [-T time-format]
 [-s sil] [-m]
 [-j] [-N miditap-note] [-V miditap-velo]
 [-v] [-h]

DESCRIPTION

 aubiotrack attempts to detect beats, the time where one would intuitively be
 tapping his foot.

 When started with an input source (-i/--input), the detected beats are given
 on the console, in seconds.

 When started without an input source, or with the jack option (-j/--jack),
 aubiotrack starts in jack mode.

OPTIONS

 This program follows the usual GNU command line syntax, with long options
 starting with two dashes (--). A summary of options is included below.

 -i, --input source Run analysis on this audio file. Most uncompressed and
 compressed are supported, depending on how aubio was built.

 -o, --output sink Save results in this file. The file will be created on the
 model of the input file. Beats are marked by a short wood-block like sound.

 -r, --samplerate rate Fetch the input source, resampled at the given
 sampling rate. The rate should be specified in Hertz as an integer. If 0,
 the sampling rate of the original source will be used. Defaults to 0.

 -B, --bufsize win The size of the buffer to analyze, that is the length
 of the window used for spectral and temporal computations. Defaults to 512.

 -H, --hopsize hop The number of samples between two consecutive analysis.
 Defaults to 256.

 -s, --silence sil Set the silence threshold, in dB, under which the pitch
 will not be detected. A value of -20.0 would eliminate most onsets but the
 loudest ones. A value of -90.0 would select all onsets. Defaults to -90.0.

 -m, --mix-input Mix source signal to the output signal before writing to
 sink.

 -f, --force-overwrite Overwrite output file if it already exists.

 -j, --jack Use Jack input/output. You will need a Jack connection
 controller to feed aubio some signal and listen to its output.

 -N, --miditap-note Override note value for MIDI tap. Defaults to 69.

 -V, --miditap-velop Override velocity value for MIDI tap. Defaults to 65.

 -T, --timeformat format Set time format (samples, ms, seconds). Defaults to
 seconds.

 -h, --help Print a short help message and exit.

 -v, --verbose Be verbose.

BEAT TRACKING METHODS

 Aubio currently implements one the causal beat tracking algorithm designed by
 Matthew Davies and described in the following articles:

 Matthew E. P. Davies and Mark D. Plumbley. Causal tempo tracking of audio.
 In Proceedings of the International Symposium on Music Information Retrieval
 (ISMIR), pages 164­169, Barcelona, Spain, 2004.

 Matthew E. P. Davies, Paul Brossier, and Mark D. Plumbley. Beat tracking
 towards automatic musical accompaniment. In Proceedings of the Audio
 Engineering Society 118th Convention, Barcelona, Spain, May 2005.

SEE ALSO

 aubioonset(1),
 aubiopitch(1),
 aubionotes(1),
 aubioquiet(1),
 aubiomfcc(1),
 and
 aubiocut(1).

AUTHOR

 This manual page was written by Paul Brossier <piem@aubio.org>. Permission is
 granted to copy, distribute and/or modify this document under the terms of
 the GNU General Public License as published by the Free Software Foundation,
 either version 3 of the License, or (at your option) any later version.

aubionotes

NAME
 aubionotes - a command line tool to extract musical notes

SYNOPSIS

 aubionotes source
 aubionotes [[-i] source]
 [-r rate] [-B win] [-H hop]
 [-O method] [-t thres] [-d drop]
 [-p method] [-u unit] [-l thres]
 [-T time-format]
 [-s sil]
 [-j] [-v] [-h]

DESCRIPTION

 aubionotes attempts to detect notes by looking for note onsets and pitches.
 Consecutive events are segmented using onset detection, while a fundamental
 frequency extraction algorithm determines their pitch.

 When started with an input source (-i/--input), the detected notes are
 printed on standard output, in seconds and midi note number.

 When started without an input source, or with the jack option (-j/--jack),
 aubionotes starts in jack mode.

OPTIONS

 This program follows the usual GNU command line syntax, with long options
 starting with two dashes (--). A summary of options is included below.

 -i, --input source Run analysis on this audio file. Most uncompressed and
 compressed are supported, depending on how aubio was built.

 -r, --samplerate rate Fetch the input source, resampled at the given
 sampling rate. The rate should be specified in Hertz as an integer. If 0,
 the sampling rate of the original source will be used. Defaults to 0.

 -B, --bufsize win The size of the buffer to analyze, that is the length
 of the window used for spectral and temporal computations. Defaults to 512.

 -H, --hopsize hop The number of samples between two consecutive analysis.
 Defaults to 256.

 -O, --onset method The onset detection method to use. See ONSET METHODS
 below. Defaults to 'default'.

 -t, --onset-threshold thres Set the threshold value for the onset peak
 picking. Typical values are typically within 0.001 and 0.900. Defaults to
 0.1. Lower threshold values imply more onsets detected. Try 0.5 in case of
 over-detections. Defaults to 0.3.

 -M, --minioi value Set the minimum inter-onset interval, in seconds, the
 shortest interval between two consecutive notes. Defaults to 0.030

 -p, --pitch method The pitch detection method to use. See PITCH METHODS
 below. Defaults to 'default'.

 -u, --pitch-unit unit The unit to be used to print frequencies. Possible
 values include midi, bin, cent, and Hz. Defaults to 'Hz'.

 -l, --pitch-tolerance thres Set the tolerance for the pitch detection
 algorithm. Typical values range between 0.2 and 0.9. Pitch candidates found
 with a confidence less than this threshold will not be selected. The higher
 the threshold, the more confidence in the candidates. Defaults to unset.

 -s, --silence sil Set the silence threshold, in dB, under which the pitch
 will not be detected. A value of -20.0 would eliminate most onsets but the
 loudest ones. A value of -90.0 would select all onsets. Defaults to -90.0.

 -d, --release-drop Set the release drop threshold, in dB. If the level drops
 more than this amount since the last note started, the note will be turned
 off. Defaults to 10.

 -T, --timeformat format Set time format (samples, ms, seconds). Defaults to
 seconds.

 -j, --jack Use Jack input/output. You will need a Jack connection
 controller to feed aubio some signal and listen to its output.

 -h, --help Print a short help message and exit.

 -v, --verbose Be verbose.

ONSET METHODS

 Available methods: default, energy, hfc, complex, phase, specdiff, kl, mkl,
 specflux.

 See aubioonset(1) for details about these methods.

PITCH METHODS

 Available methods: default, schmitt, fcomb, mcomb, specacf, yin, yinfft,
 yinfast.

 See aubiopitch(1) for details about these methods.

SEE ALSO

 aubioonset(1),
 aubiopitch(1),
 aubiotrack(1),
 aubioquiet(1),
 aubiomfcc(1),
 and
 aubiocut(1).

AUTHOR

 This manual page was written by Paul Brossier <piem@aubio.org>. Permission is
 granted to copy, distribute and/or modify this document under the terms of
 the GNU General Public License as published by the Free Software Foundation,
 either version 3 of the License, or (at your option) any later version.

aubioquiet

NAME
 aubioquiet - a command line tool to extracts quiet and loud regions from a file

SYNOPSIS

 aubioquiet source
 aubioquiet [[-i] source]
 [-r rate] [-B win] [-H hop]
 [-T time-format]
 [-s sil]
 [-v] [-h]

DESCRIPTION

 aubioquiet will print a timestamp each time it detects a new silent region or
 a new loud region in a sound file.

 When started with an input source (-i/--input), the detected timestamps are
 printed on the console, in seconds.

OPTIONS

 This program follows the usual GNU command line syntax, with long options
 starting with two dashes (--). A summary of options is included below.

 -i, --input source Run analysis on this audio file. Most uncompressed and
 compressed are supported, depending on how aubio was built.

 -r, --samplerate rate Fetch the input source, resampled at the given
 sampling rate. The rate should be specified in Hertz as an integer. If 0,
 the sampling rate of the original source will be used. Defaults to 0.

 -B, --bufsize win The size of the buffer to analyze, that is the length
 of the window used for spectral and temporal computations. Defaults to 512.

 -H, --hopsize hop The number of samples between two consecutive analysis.
 Defaults to 256.

 -s, --silence sil Set the silence threshold, in dB, under which the pitch
 will not be detected. Defaults to -90.0.

 -T, --timeformat format Set time format (samples, ms, seconds). Defaults to
 seconds.

 -h, --help Print a short help message and exit.

 -v, --verbose Be verbose.

EXAMPLE OUTPUT

 NOISY: 28.775330

 QUIET: 28.914648

SEE ALSO

 aubioonset(1),
 aubiopitch(1),
 aubiotrack(1),
 aubionotes(1),
 aubiomfcc(1),
 and
 aubiocut(1).

AUTHOR

 This manual page was written by Paul Brossier <piem@aubio.org>. Permission
 is granted to copy, distribute and/or modify this document under the terms
 of the GNU General Public License, Version 3 any later version published
 by the Free Software Foundation.

Command line features

	feat vs. prg

	onset

	pitch

	mfcc

	track

	notes

	quiet

	cut1

	short options

	input

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	-i

	output

	Y

	Y

	N

	Y

	Y

	N

	Y!1

	-o,-m,-f

	Hz/buf/hop

	Y

	Y

	Y

	Y

	Y

	Y!2

	Y

	-r,-B-,H

	jack

	Y

	Y

	N

	Y

	Y

	N!3

	N

	-j

	onset

	Y

	N

	N

	Y!8

	Y!6

	N

	Y

	-O,-t,-M

	pitch

	N

	Y

	N

	N

	Y!6

	N

	N!5

	-p,-u,-l

	silence

	Y

	Y

	N

	Y

	Y!7

	Y

	N!4

	-s

	timefmt

	Y

	Y

	Y

	Y

	Y

	Y

	!

	-T

	help

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	-h

	verbose

	Y

	Y

	Y

	Y

	Y

	Y

	Y

	-v

	aubiocut --output is used to specify a directory, not a file.

	Option --bufsize is useless for aubioquiet

	aubioquiet could have a jack output

	Regression, re-add slicing at silences to aubiocut

	aubiocut could cut on notes

	aubionotes needs onset/pitch setters.

	Silence was different for pitch and onset, test.

	Some aubiotrack options should be disabled (minioi, threshold).

Developing with aubio

Here is a brief overview of the C library.

For a more detailed list of available functions, see the API documentation [https://aubio.org/doc/latest/].

To report issues, ask questions, and request new features, use Github Issues [https://github.com/aubio/aubio/issues]

Design Basics

The library is written in C and is optimised for speed and portability.

All memory allocations take place in the new_ methods. Each successful call
to new_ should have a matching call to del_ to deallocate the object.

// new_ to create an object foobar
aubio_foobar_t * new_aubio_foobar(void * args);
// del_ to delete foobar
void del_aubio_foobar (aubio_foobar_t * foobar);

The main computations are done in the _do methods.

// _do to process output = foobar(input)
audio_foobar_do (aubio_foobar_t * foobar, fvec_t * input, cvec_t * output);

Most parameters can be read and written at any time:

// _get_param to get foobar.param
smpl_t aubio_foobar_get_a_parameter (aubio_foobar_t * foobar);
// _set_param to set foobar.param
uint_t aubio_foobar_set_a_parameter (aubio_foobar_t * foobar, smpl_t a_parameter);

In some case, more functions are available:

// non-real time functions
uint_t aubio_foobar_reset(aubio_foobar_t * t);

Basic Types

// integers
uint_t n = 10; // unsigned
sint_t delay = -90; // signed

// float
smpl_t a = -90.; // simple precision
lsmp_t f = 0.024; // double precision

// vector of floats (simple precision)
fvec_t * vec = new_fvec(n);
vec->data[0] = 1;
vec->data[vec->length-1] = 1.; // vec->data has n elements
fvec_print(vec);
del_fvec(vec);

// complex data
cvec_t * fftgrain = new_cvec(n);
vec->norm[0] = 1.; // vec->norm has n/2+1 elements
vec->phas[n/2] = 3.1415; // vec->phas as well
del_cvec(fftgrain);

// matrix
fmat_t * mat = new_fmat (height, length);
mat->data[height-1][0] = 1; // mat->data has height rows
mat->data[0][length-1] = 10; // mat->data[0] has length columns
del_fmat(mat);

Reading a sound file

In this example, aubio_source [https://aubio.org/doc/latest/source_8h.html]
is used to read a media file.

First, define a few variables and allocate some memory.

 uint_t samplerate = 0;
 uint_t hop_size = 256;
 uint_t n_frames = 0, read = 0;

 aubio_source_t* s =
 new_aubio_source(source_path, samplerate, hop_size);
 fvec_t *vec = new_fvec(hop_size);

Note

With samplerate = 0, aubio_source will be created with the file’s
original samplerate.

Now for the processing loop:

 do {
 aubio_source_do(s, vec, &read);
 fvec_print (vec);
 n_frames += read;
 } while (read == hop_size);

At the end of the processing loop, memory is deallocated:

 del_fvec (vec);
 del_aubio_source (s);

See the complete example: test-source.c.

Computing a spectrum

Now let’s create a phase vocoder:

 uint_t win_s = 32; // window size
 uint_t hop_s = win_s / 4; // hop size

 fvec_t * in = new_fvec (hop_s); // input buffer
 cvec_t * fftgrain = new_cvec (win_s); // fft norm and phase
 fvec_t * out = new_fvec (hop_s); // output buffer

The processing loop could now look like:

 while (n--) {
 // get some fresh input data
 // ..

 // execute phase vocoder
 aubio_pvoc_do (pv,in,fftgrain);

 // do something with fftgrain
 // ...
 cvec_print (fftgrain);

 // optionally rebuild the signal
 aubio_pvoc_rdo(pv,fftgrain,out);

 // and do something with the result
 // ...
 fvec_print (out);
 }

Time to clean up the previously allocated memory:

 // clean up
 del_fvec(in);
 del_cvec(fftgrain);
 del_fvec(out);
 del_aubio_pvoc(pv);
 aubio_cleanup();

See the complete example: test-phasevoc.c.

Doxygen documentation

The latest version of the API documentation is built using Doxygen [http://www.doxygen.org/] and is available at:

https://aubio.org/doc/latest/

Contribute

Please report any issue and feature request at the Github issue tracker [https://github.com/aubio/aubio/issues]. Patches and pull-requests welcome!

About

This library gathers a collection of music signal processing algorithms written
by several people. The documentation of each algorithms contains a brief
description and references to the corresponding papers.

Credits

Many thanks to everyone who contributed to aubio, including:

	Martin Hermant (MartinHN [https://github.com/MartinHN])

	Eduard Müller (emuell [https://github.com/emuell])

	Nils Philippsen (nphilipp [https://github.com/nphilipp])

	Tres Seaver (tseaver [https://github.com/tseaver])

	Dirkjan Rijnders (dirkjankrijnders [https://github.com/dirkjankrijnders])

	Jeffrey Kern (anwserman [https://github.com/anwserman])

	Sam Alexander (sxalexander [https://github.com/sxalexander])

Special thanks to Juan Pablo Bello, Chris Duxbury, Samer Abdallah, Alain de
Cheveigne for their help. Also many thanks to Miguel Ramirez and Nicolas Wack
for their advices and help fixing bugs.

Publications

Substantial informations about several of the algorithms and their evaluation
are gathered in:

	Paul Brossier, Automatic annotation of musical audio for interactive
systems [https://aubio.org/phd], PhD thesis, Centre for Digital music,
Queen Mary University of London, London, UK, 2006.

Additional results obtained with this software were discussed in the following
papers:

	P. M. Brossier and J. P. Bello and M. D. Plumbley, Real-time temporal
segmentation of note objects in music signals [https://aubio.org/articles/brossier04fastnotes.pdf] in Proceedings of
the International Computer Music Conference, 2004, Miami, Florida, ICMA

	P. M. Brossier and J. P. Bello and M. D. Plumbley, Fast labelling of note
objects in music signals
<https://aubio.org/articles/brossier04fastnotes.pdf>, in Proceedings of
the International Symposium on Music Information Retrieval, 2004,
Barcelona, Spain

Citation

Please refer to the Zenodo link in the file README.md to cite this release.

Copyright

Copyright © 2003-2017 Paul Brossier <piem@aubio.org>

License

aubio is a free [https://www.debian.org/intro/free] and open source [http://www.opensource.org/docs/definition.php] software; you can
redistribute it and/or modify it under the terms of the GNU [https://www.gnu.org/] General Public License [https://www.gnu.org/licenses/gpl.html] as published by the Free Software
Foundation [https://fsf.org], either version 3 of the License, or (at your
option) any later version.

Note

aubio is not MIT or BSD licensed. Contact us if you need it in your
commercial product.

Index

 A
 | B
 | C
 | D
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | P
 | S
 | U
 | W
 | Z

A

 	
 	alpha_norm() (in module aubio)

B

 	
 	bintofreq() (in module aubio)

 	
 	bintomidi() (in module aubio)

C

 	
 	channels (aubio.sink attribute)

 	(aubio.source attribute)

 	
 	close() (aubio.sink method)

 	(aubio.source method)

 	cvec (class in aubio)

D

 	
 	db_spl() (in module aubio)

 	do() (aubio.sink method)

 	(aubio.source method)

 	
 	do_multi() (aubio.sink method)

 	(aubio.source method)

 	duration (aubio.source attribute)

F

 	
 	float_type (in module aubio)

 	freq2note() (in module aubio)

 	
 	freqtobin() (in module aubio)

 	freqtomidi() (in module aubio)

 	fvec (class in aubio)

G

 	
 	get_channels() (aubio.source method)

 	
 	get_samplerate() (aubio.source method)

H

 	
 	hop_size (aubio.source attribute)

 	
 	hztomel() (in module aubio)

I

 	
 	ishift() (in module aubio)

L

 	
 	length (aubio.cvec attribute)

 	
 	level_detection() (in module aubio)

 	level_lin() (in module aubio)

M

 	
 	meltohz() (in module aubio)

 	midi2note() (in module aubio)

 	
 	miditobin() (in module aubio)

 	miditofreq() (in module aubio)

 	min_removal() (in module aubio)

N

 	
 	norm (aubio.cvec attribute)

 	
 	note2freq() (in module aubio)

 	note2midi() (in module aubio)

P

 	
 	phas (aubio.cvec attribute)

S

 	
 	samplerate (aubio.sink attribute)

 	(aubio.source attribute)

 	seek() (aubio.source method)

 	shift() (in module aubio)

 	silence_detection() (in module aubio)

 	sink (class in aubio)

 	sink.__call__() (in module aubio)

 	
 	slice_source_at_stamps() (in module aubio)

 	source (class in aubio)

 	source.__call__() (in module aubio)

 	source.__enter__() (in module aubio)

 	source.__exit__() (in module aubio)

 	source.__iter__() (in module aubio)

 	source.__next__() (in module aubio)

U

 	
 	unwrap2pi() (in module aubio)

 	
 	uri (aubio.sink attribute)

 	(aubio.source attribute)

W

 	
 	window() (in module aubio)

Z

 	
 	zero_crossing_rate() (in module aubio)

 _static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Welcome

 		
 Installing aubio

 		
 Cheat sheet

 		
 Downloading aubio

 		
 Pre-compiled binaries

 		
 Debian/Ubuntu packages

 		
 Building aubio

 		
 Latest release

 		
 Git repository

 		
 Compiling

 		
 Running as a user

 		
 Cleaning

 		
 Frameworks for Xcode

 		
 Using aubio from swift

 		
 Android build

 		
 Build options

 		
 External libraries

 		
 Media libraries

 		
 libav

 		
 libsndfile

 		
 libsamplerate

 		
 Optimisation libraries

 		
 libfftw3

 		
 blas

 		
 atlas

 		
 openblas

 		
 libblas

 		
 Platform notes

 		
 Linux

 		
 macOS

 		
 Windows

 		
 iOS

 		
 Other options

 		
 Double precision

 		
 Disabling the tests

 		
 Edit wscript

 		
 Building the docs

 		
 Installing aubio for Python

 		
 Installing aubio with pip

 		
 Installing aubio with conda

 		
 Double precision

 		
 Checking your installation

 		
 Python tests

 		
 Python documentation

 		
 Contents

 		
 Data-types

 		
 Input/Output

 		
 Utilities

 		
 Examples

 		
 Introduction

 		
 Command line tools

 		
 aubio

 		
 aubiocut

 		
 aubioonset

 		
 aubiopitch

 		
 aubiomfcc

 		
 aubiotrack

 		
 aubionotes

 		
 aubioquiet

 		
 Command line features

 		
 Developing with aubio

 		
 Design Basics

 		
 Basic Types

 		
 Reading a sound file

 		
 Computing a spectrum

 		
 Doxygen documentation

 		
 Contribute

 		
 About

 		
 Credits

 		
 Publications

 		
 Citation

 		
 Copyright

 		
 License

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

